[ report an error in this record ]basket (0): add | show Print this page

Traits of tidal marsh plants determine survival and growth response to hydrodynamic forcing: implications for nature-based shoreline protection
Schoutens, K.; Luys, P.; Heuner, M.; Fuchs, E.; Minden, V.; Schulte-Ostermann, T.; Bouma, T.J.; van Belzen, J.; Temmerman, S. (2022). Traits of tidal marsh plants determine survival and growth response to hydrodynamic forcing: implications for nature-based shoreline protection. Mar. Ecol. Prog. Ser. 693: 107-124. https://dx.doi.org/10.3354/meps14091
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keywords
    Bolboschoenus maritimus (L.) Palla [WoRMS]; Phragmites australis (Cav.) Trin. ex Steud. [WoRMS]; Schoenoplectus tabernaemontani (C. C. Gmel.) Palla [WoRMS]
Author keywords
    Plant traits; Growth response; Hydrodynamic exposure; Tidal inundation; Schoenoplectus tabernaemontani; Bolboschoenus maritimus; Phragmites australis

Authors  Top 
  • Schoutens, K., more
  • Luys, P., more
  • Heuner, M.
  • Fuchs, E.
  • Minden, V., more
  • Schulte-Ostermann, T.
  • Bouma, T.J., more
  • van Belzen, J., more
  • Temmerman, S., more

Abstract
    Tidal marshes are increasingly valued for their nature-based shoreline protection function, as they reduce waves, currents and erosion. The effectiveness of this function depends on the ability of tidal marsh plants to grow and survive under pressure from waves and currents. However, how this varies with species-dependent plant traits is poorly understood. We performed a field transplantation experiment to quantify species-specific growth responses to different levels of hydrodynamic exposure and tidal inundation for 3 NW European marsh species: Schoenoplectus tabernaemontani, Bolboschoenus maritimus and Phragmites australis. In this order, these species showed increasing shoot stiffness, length and biomass, which are traits that increase hydrodynamic drag forces experienced by plants. Increased exposure to tidal inundation and hydrodynamics reduced the growth of all 3 species, but species with lower biomass and shorter, thinner and more flexible shoots could better cope with higher hydrodynamic exposure and tidal inundation. Furthermore, transplants of S. tabernaemontani (i.e. the species with the lowest shoot stiffness, length and biomass that survived under all tested conditions) developed smaller, thinner and more flexible shoots in response to higher hydrodynamic exposure and inundation. Hence our study indicates that similar inter- and intra-specific plant traits drive plant growth in response to hydrodynamics and inundation. This suggests that the spatial distribution of species typically observed in tidal marshes results not only from species-specific tolerance to tidal inundation gradients but also from hydrodynamic gradients. Allowing enough space for development of species zonation may be important to increase the efficiency of nature-based shoreline protection by tidal marshes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors