[ report an error in this record ]basket (0): add | show Print this page

The structure and organisation of integral marine benthic communities in relation to sieve mesh size
Somerfield, P.J.; Dashfield, S.L.; Warwick, R.M. (2018). The structure and organisation of integral marine benthic communities in relation to sieve mesh size. J. Exp. Mar. Biol. Ecol. 502: 164-173. https://dx.doi.org/10.1016/j.jembe.2017.08.007
In: Journal of Experimental Marine Biology and Ecology. Elsevier: New York. ISSN 0022-0981; e-ISSN 1879-1697, more
Peer reviewed article  

Available in  Authors 

Keywords
    Aquatic communities > Benthos > Meiobenthos
    Body size
    Macrobenthos
    Sampling methods
    Marine/Coastal
Author keywords
    Fractal; diversity

Authors  Top 
  • Somerfield, P.J., more
  • Dashfield, S.L., more
  • Warwick, R.M.

Abstract
    Few studies consider meiofauna and macrofauna at the same time, even though both form parts of wider ecological networks, and fewer consider interactions between sample size, body size and spatial clustering. It has been suggested that the elements of the structure of the physical environment have fractal properties. If habitat complexity largely determines species diversity this leads to the prediction (for a single perfect fractal) that all organisms, regardless of size, will perceive the environment as equally complex and should have equivalent diversity and, as we move up the size spectrum, species composition should change in a regular and gradual fashion. This study examines the degree to which infaunal assemblage structure varies with mesh size, sample size and sample dispersion within two different areas of homogeneous intertidal sediment, a muddy sand and a coarse sand, in the Isles of Scilly, UK. In each area samples were extracted using a standard range of 5 mesh sizes (63, 125, 250, 500, 1000 μm), with the sample areas and distances between samples scaled to the mesh size. All metazoans were identified to species level. Diversity and species composition did not show a gradual and even degree of change over the size range at either site. Instead, they showed a dramatic stepwise change between the 250 μm and 500 μm mesh size samples, being relatively constant in the < 500 μm and > 500 μm categories, with diversity higher in the former. Higher proportions of species in the < 500 μm categories showed evidence of spatial clustering than in the > 500 μm categories. This suggests a fractal structure within but not between the < 500 μm and > 500 μm body size categories, which apparently is not driven by differences in sediment structure. The biology of marine metazoan benthos does not scale continuously across the full range of taxa and body size as has been recently suggested, but may do so for individual taxa and restricted size ranges.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors