[ report an error in this record ]basket (0): add | show Print this page

Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea
Cuveliers, E.L.; Geffen, A.J.; Guelinckx, J.; Raeymaekers, J.A.M.; Skadal, J.; Volckaert, F.A.M.; Maes, G.E. (2010). Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea. Mar. Ecol. Prog. Ser. 401: 211-220. dx.doi.org/10.3354/meps08439
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Connectivity; Juvenile fish; Nursery; Otolith microchemistry;

Authors  Top 
  • Cuveliers, E.L., more
  • Geffen, A.J.
  • Guelinckx, J., more
  • Raeymaekers, J.A.M., more
  • Skadal, J.
  • Volckaert, F.A.M., more
  • Maes, G.E., more

Abstract
    Estimating connectivity between juvenile and adult fish habitats can provide an important contribution to effective fisheries management, through a better understanding of population resilience to harvesting pressure. Indirect methods for quantifying connectivity, such as geochemical or genetic techniques, allow us to assign adults from various sampling regions to their natal location, provided that natal origin data can be defined. The elemental composition of otoliths from juvenile sole Solea solea collected at 4 sampling locations in the Southern Bight of the North Sea was measured using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS), to determine elemental fingerprints indicative of distinct nursery grounds. Significant differences in elemental composition were detected among the 4 locations, with Na, Sr, Ba, Mn and RI) concentrations varying the most between groups. A discriminant model resulted in high assignment proportions of the juvenile fish to their respective nursery grounds with a total jackknife reclassification success of 88%. Even though some interannual variability in otolith chemistry was observed in juveniles from the Scheldt estuary, spatial patterns seemed to dominate. Our results constitute a firm basis for future investigations on nursery area contributions and quality, adult dispersal history and applications of population traceability.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors