[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [100625]
Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe
Goosen, N.K.; Van Rijswijk, P.; Brockmann, U.H. (1995). Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe. Hydrobiologia 311(1-3): 31-42. https://dx.doi.org/10.1007/BF00008569
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158; e-ISSN 1573-5117, more
Related to:
Goosen, N.K.; Van Rijswijk, P.; Brockmann, U.H. (1995). Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe, in: Heip, C.H.R. et al. Major biological processes in European tidal estuaries. Developments in Hydrobiology, 110: pp. 31-42, more
Peer reviewed article  

Available in  Authors 

Keywords
    Biological production
    Biological production > Secondary production
    Depletion > Oxygen depletion
    Environmental effects > Salinity effects
    Microorganisms > Bacteria
    Nutritional types > Heterotrophy
    Organic matter
    Organic matter > Carbon > Organic carbon > Dissolved organic matter > Dissolved organic carbon
    Properties > Physical properties > Turbidity
    Water bodies > Coastal waters > Coastal landforms > Coastal inlets > Estuaries
    ANE, Germany, Elbe Estuary [Marine Regions]
    Marine/Coastal; Brackish water

Authors  Top 
  • Goosen, N.K., more
  • Van Rijswijk, P., more
  • Brockmann, U.H.

Abstract
    In spring bacterial production rates were estimated by tritiated thymidine incorporation in the turbid estuaries of the rivers Scheldt and Elbe. Bacterial production rates in the Scheldt were 5 times higher than in the Elbe. In the Scheldt bacterial production rates correlated better with the DOC concentration than in the Elbe. Organic matter concentrations in the marine part of the estuaries were the same while in the brackish part concentrations in the Scheldt were much more higher. In the Scheldt, but not in the Elbe, oxygen depletion occurred in the maximum turbidity zone caused by bacterial growth and respiration. The water in the Scheldt was well-mixed while in the turbidity maximum of the Elbe salinity and bacterial production was higher near the bottom than at the surface. Nutrient concentrations in the Scheldt were higher than in the Elbe. Bacterial production rate values in the Scheldt are among the highest reported in the literature. The relatively high bacterial production rates in both estuaries are caused by a high load of waste water. Comparison of bacterial growth rates and water residence time suggests an intensive grazing by probably protozoa. Production rates showed a tidal dynamic. In the Elbe high current velocities caused resuspension of sediment and increased bacterial production rates near the bottom. The high production rates in the turbidity maximum and freshwater part of both estuaries show that a large amount of organic matter is degraded in this region.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors