[ report an error in this record ]basket (0): add | show Print this page

Nature‐based shoreline protection in newly formed tidal marshes is controlled by tidal inundation and sedimentation rate
Stoorvogel, M.; Temmerman, S.; Oosterlee, L.; Schoutens, K.; Maris, T.; van de Koppel, J.; Meire, P.; Bouma, T. (2024). Nature‐based shoreline protection in newly formed tidal marshes is controlled by tidal inundation and sedimentation rate. Limnol. Oceanogr. 69(10): 2377-2390. https://dx.doi.org/10.1002/lno.12676
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Stoorvogel, M., more
  • Temmerman, S., more
  • Oosterlee, L., more
  • Schoutens, K.

Abstract
    Many tidal marshes have been lost by past land use changes, but are nowadays increasingly restored and created to provide valuable ecosystem services such as nature-based flood and erosion protection along estuarine shorelines. To be functional for flood and shoreline erosion protection, restored and created tidal marshes should develop erosion resistant sediment beds. Here, we investigated which factors drive the spatial variations in sediment strength and erosion resistance in a developing tidal marsh restoration site. Our results show that decreasing tidal inundation frequency, decreasing sedimentation rate, and better drainage led to stronger consolidation in deeper sediment layers. This consolidation resulted in greater sediment strength, quantified here by shear strength and penetration resistance. Generally, sediment strength was greater when sediment had higher bulk density, while a higher water and fine fraction (= clay and silt) content decreased sediment strength. Overall, all measurement locations were relatively erosion resistant, likely caused by the dense root network and cohesive sediment. To restore or create resilient tidal marshes for nature-based flood and shoreline erosion protection, we should thus aim for sites with relatively low tidal inundation frequency, moderate sedimentation rates, and cohesive sediment mixtures of clay, silt, and sand, which are well drained and have potential for vegetation establishment. These conditions have a high likelihood of resulting in restored or created tidal marshes that contribute to nature-based flood and shoreline erosion protection.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors