[ report an error in this record ]basket (0): add | show Print this page

Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks
de Nolasco Santos, F.; D'Antuono, P.; Robbelein, K.; Noppe, N.; Weijtjens, W.; Devriendt, C. (2023). Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks. Renew. Energy 205: 461-474. https://dx.doi.org/10.1016/j.renene.2023.01.093
In: Renewable Energy. Elsevier: Oxford. ISSN 0960-1481; e-ISSN 1879-0682, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Offshore wind; Structural health monitoring; Physics-informed machine learning

Authors  Top 
  • de Nolasco Santos, F., more
  • D'Antuono, P., more
  • Robbelein, K., more

Abstract
    Offshore wind turbines are exposed during their serviceable lifetime to a wide range of loads from aero-, hydro- and structural dynamics. This complex loading scenario will have an impact on the lifetime of the asset, with fatigue remaining the key structural design driver for the substructure, e.g. the monopile. The ability to monitor the progression of fatigue life of these assets has recently become an operational concern. To achieve a monitoring alternative to strain gauges (cost-prohibitive farm-wide installation), supervisory control and data acquisition (SCADA) systems, often coupled with acceleration measurements, have been used. Existing work focused primarily on ten-minute fatigue load estimation. However, fatigue accumulates over time and the ability to accurately monitor this accumulation of fatigue over a longer time-window is paramount. In this contribution we investigate a novel approach using nine months of real-world SCADA and acceleration ten-minute statistics as inputs of a neural network model for long-term DEM estimation. This is further enhanced by including physical information relative to the problem at hand into the neural network model, in a so-called physics-informed machine learning approach. Specifically, we employ a custom loss function – the Minkowski logarithmic error – which prioritizes conservativeness (over-prediction of fatigue rates) and to embed the damage accumulation into the machine learning model.In the results and discussion section, we use Tower-TP interface load measurements for three real-world turbines to demonstrate the concept. First a model is trained on one turbine, before being applied to all three locations. The model performance is compared to direct measurements of fatigue progression at all three locations and a control loss function (the mean squared logarithm error) in both the Fore-Aft and Side-Side loading directions. The novel physics-informed model clearly outperforms the control loss function in accumulated fatigue predictions with errors below 3% on accumulated damage equivalent moment estimates. Additionally, the model’s long-term performance is checked according to varying timescales (hourly, daily, weekly or monthly accumulation of DEM) and it is seen that the spread on the error rapidly reduces and converges to zero. Finally, the long-term DEM is accumulated into a monthly accumulated fatigue damage. We also see how the error on this begins to converge after 6+ months, which opens the door for extrapolation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors