[ report an error in this record ]basket (0): add | show Print this page

Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia
Zhou, Y.; Evans, C.D.; Chen, Y.; Chang, K.Y.W.; Martin, P. (2021). Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia. JGR: Oceans 126(6): e2021JC017292. https://dx.doi.org/10.1029/2021JC017292
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    terrigenous organic carbon; remineralization; acidification; Sunda Shelf Sea; tropical peatlands

Authors  Top 
  • Zhou, Y.
  • Evans, C.D.
  • Chen, Y.
  • Chang, K.Y.W.
  • Martin, P., more

Abstract
    Southeast Asia is a hotspot of riverine export of terrigenous organic carbon to the ocean, accounting for ∼10% of the global land-to-ocean riverine flux of terrigenous dissolved organic carbon (tDOC). While anthropogenic disturbance is thought to have increased the tDOC loss from peatlands in Southeast Asia, the fate of this tDOC in the marine environment and the potential impacts of its remineralization on coastal ecosystems remain poorly understood. We collected a multi-year biogeochemical time series in the central Sunda Shelf (Singapore Strait), where the seasonal reversal of ocean currents delivers water masses from the South China Sea first before (during Northeast Monsoon) and then after (during Southwest Monsoon) they have mixed with run-off from peatlands on Sumatra. The concentration and stable isotope composition of DOC, and colored dissolved organic matter spectra, reveal a large input of tDOC to our site during Southwest Monsoon. Using isotope mass balance calculations, we show that 60%–70% of the original tDOC input is remineralized in the coastal waters of the Sunda Shelf, causing seasonal acidification. The persistent CO2 oversaturation drives a CO2 efflux of 2.4–4.9 mol m−2 yr−1 from the Singapore Strait, suggesting that a large proportion of the remineralized peatland tDOC is ultimately emitted to the atmosphere. However, incubation experiments show that the remaining 30%–40% tDOC exhibits surprisingly low lability to microbial and photochemical degradation, suggesting that up to 20%–30% of peatland tDOC might be relatively refractory and exported to the open ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors