[ report an error in this record ]basket (0): add | show Print this page

Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor
Zarkadas, E.; Pebay-Peyroula, E.; Thompson, M.J.; Schoehn, G.; Uchanski, T.; Steyaert, J.; Chipot, C.; Dehez, F.; Baenziger, J.E.; Nury, H. (2022). Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 110(8): 1358-1370.e5. https://dx.doi.org/10.1016/j.neuron.2022.01.013
In: Neuron. Cell Press: Cambridge. ISSN 0896-6273; e-ISSN 1097-4199, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Zarkadas, E.
  • Pebay-Peyroula, E.
  • Thompson, M.J.
  • Schoehn, G.
  • Uchanski, T., more
  • Steyaert, J., more
  • Chipot, C.
  • Dehez, F.
  • Baenziger, J.E.
  • Nury, H.

Abstract
    Fast synaptic communication requires receptors that respond to the presence of neurotransmitter by opening an ion channel across the post-synaptic membrane. The muscle-type nicotinic acetylcholine receptor from the electric fish, Torpedo, is the prototypic ligand-gated ion channel, yet the structural changes underlying channel activation remain undefined. Here we use cryo-EM to solve apo and agonist-bound structures of the Torpedo nicotinic receptor embedded in a lipid nanodisc. Using both a direct biochemical assay to define the conformational landscape and molecular dynamics simulations to assay flux through the pore, we correlate structures with functional states and elucidate the motions that lead to pore activation of a heteromeric nicotinic receptor. We highlight an underappreciated role for the complementary subunit in channel gating, establish the structural basis for the differential agonist affinities of α/δ versus α /γ sites, and explain why nicotine is less potent at muscle nicotinic receptors compared to neuronal ones.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors