[ report an error in this record ]basket (0): add | show Print this page

Transfer efficiency of organic carbon in marine sediments
Bradley, J.A.; Hülse, D.; LaRowe, D.E.; Arndt, S. (2022). Transfer efficiency of organic carbon in marine sediments. Nature Comm. 13(1): 7297. https://dx.doi.org/10.1038/s41467-022-35112-9
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Bradley, J.A.
  • Hülse, D.
  • LaRowe, D.E.
  • Arndt, S., more

Abstract
    Quantifying the organic carbon (OC) sink in marine sediments is crucial for assessing how the marine carbon cycle regulates Earth’s climate. However, burial efficiency (BE) – the commonly-used metric reporting the percentage of OC deposited on the seafloor that becomes buried (beyond an arbitrary and often unspecified reference depth) – is loosely defined, misleading, and inconsistent. Here, we use a global diagenetic model to highlight orders-of-magnitude differences in sediment ages at fixed sub-seafloor depths (and vice-versa), and vastly different BE’s depending on sediment depth or age horizons used to calculate BE. We propose using transfer efficiencies (Teff’s) for quantifying sediment OC burial: Teff is numerically equivalent to BE but requires precise specification of spatial or temporal references, and emphasizes that OC degradation continues beyond these horizons. Ultimately, quantifying OC burial with precise sediment-depth and sediment-age-resolved metrics will enable a more consistent and transferable assessment of OC fluxes through the Earth system.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors