[ report an error in this record ]basket (0): add | show Print this page

PhenoGMM: Gaussian mixture modeling of cytometry data quantifies changes inmicrobial community structure
Rubbens, P.; Props, R.; Kerckhof, F.-M.; Boon, N.; Waegeman, W. (2021). PhenoGMM: Gaussian mixture modeling of cytometry data quantifies changes inmicrobial community structure. mSphere 6(1): e00530-20. https://dx.doi.org/10.1128/msphere.00530-20
In: mSphere. American Society for Microbiology: Washington. e-ISSN 2379-5042, more
Peer reviewed article  

Available in  Authors 

Author keywords
    diversity, fingerprint, flow cytometry, machine learning, microbial communities, mixture model

Authors  Top 

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors