[ report an error in this record ]basket (0): add | show Print this page

Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing
Plach, A.; Nisancioglu, K.H.; Langebroek, P.M.; Born, A.; Le Clec'h, S. (2019). Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing. Cryosphere 13(8): 2133-2148. https://hdl.handle.net/10.5194/tc-13-2133-2019
In: The Cryosphere. Copernicus: Göttingen. ISSN 1994-0416; e-ISSN 1994-0424, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Plach, A.
  • Nisancioglu, K.H.
  • Langebroek, P.M.
  • Born, A.
  • Le Clec'h, S., more

Abstract
    The Greenland ice sheet contributes increasingly to global sea level rise. Its history during past warm intervals is a valuable reference for future sea level projections. We present ice sheet simulations for the Eemian interglacial period (∼130 000 to 115 000 years ago), a period with warmer-than-present summer climate over Greenland. The evolution of the Eemian Greenland ice sheet is simulated with a 3-D higher-order ice sheet model, forced with a surface mass balance derived from regional climate simulations. Sensitivity experiments with various surface mass balances, basal friction, and ice flow approximations are discussed. The surface mass balance forcing is identified as the controlling factor setting the minimum in Eemian ice volume, emphasizing the importance of a reliable surface mass balance model. Furthermore, the results indicate that the surface mass balance forcing is more important than the representation of ice flow for simulating the large-scale ice sheet evolution. This implies that modeling of the future contribution of the Greenland ice sheet to sea level rise highly depends on an accurate surface mass balance.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors