[ report an error in this record ]basket (0): add | show Print this page

Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas
Tinker, J.; Palmer, M.D.; Copsey, D.; Howard, T.; Lowe, J.A.; Hermans, T.H.J. (2020). Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas. Clim. Dyn. 55(7-8): 2207-2236. https://dx.doi.org/10.1007/s00382-020-05378-0
In: Climate Dynamics. Springer: Berlin; Heidelberg. ISSN 0930-7575; e-ISSN 1432-0894, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Regional sea-level variability; Northwest European shelf seas; Dynamic downscaling; Unforced climate variability; Present-day control simulation

Authors  Top 
  • Tinker, J.
  • Palmer, M.D.
  • Copsey, D.
  • Howard, T.
  • Lowe, J.A.
  • Hermans, T.H.J., more

Abstract
    Variability of Sea-Surface Height (SSH) from ocean dynamic processes is an important component of sea-level change. In this study we dynamically downscale a present-day control simulation of a climate model to replicate sea-level variability in the Northwest European shelf seas. The simulation can reproduce many characteristics of sea-level variability exhibited in tide gauge and satellite altimeter observations. We examine the roles of lateral ocean boundary conditions and surface atmospheric forcings in determining the sea-level variability in the model interior using sensitivity experiments. Variability in the oceanic boundary conditions leads to uniform sea-level variations across the shelf. Atmospheric variability leads to spatial SSH variability with a greater mean amplitude. We separate the SSH variability into a uniform loading term (change in shelf volume with no change in distribution), and a spatial redistribution term (with no volume change). The shelf loading variance accounted for 80% of the shelf mean total variance, but this drops to ~ 60% around Scotland and in the southeast North Sea. We analyse our modelled variability to provide a useful context to coastal planners and managers. Our 200-year simulation allows the distribution of the unforced trends (over 4–21 year) of sea-level changes to be quantified. We found that the 95th percentile change over a 4-year period can lead to coastal sea-level changes of ~ 58 mm, which must be considered when using smooth sea level projections. We also found that simulated coastal SSH variations have long correlation length-scales, suggesting that observations of interannual sea-level variability from tide gauges are typically representative of > 200 km of the adjacent coast. This helps guide the use of tide gauge variability estimates.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors