[ report an error in this record ]basket (0): add | show Print this page

Widespread energy limitation to life in global subseafloor sediments
Bradley, J.A.; Arndt, S.; Amend, P; Burwicz, E.; Dale, A. W.; Egger, M.; LaRowe, D. E. (2020). Widespread energy limitation to life in global subseafloor sediments. Science Advances 6(32): eaba0697. https://dx.doi.org/10.1126/sciadv.aba0697
In: Science Advances. AAAS: New York. e-ISSN 2375-2548, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Bradley, J.A.
  • Arndt, S., more
  • Amend, P
  • Burwicz, E.
  • Dale, A. W.
  • Egger, M., more
  • LaRowe, D. E.

Abstract
    Microbial cells buried in subseafloor sediments comprise a substantial portion of Earth’s biosphere and control global biogeochemical cycles; however, the rate at which they use energy (i.e., power) is virtually unknown. Here, we quantify organic matter degradation and calculate the power utilization of microbial cells throughout Earth’s Quaternary-age subseafloor sediments. Aerobic respiration, sulfate reduction, and methanogenesis mediate 6.9, 64.5, and 28.6% of global subseafloor organic matter degradation, respectively. The total power utilization of the subseafloor sediment biosphere is 37.3 gigawatts, less than 0.1% of the power produced in the marine photic zone. Aerobic heterotrophs use the largest share of global power (54.5%) with a median power utilization of 2.23 × 10−18 watts per cell, while sulfate reducers and methanogens use 1.08 × 10−19 and 1.50 × 10−20 watts per cell, respectively. Most subseafloor cells subsist at energy fluxes lower than have previously been shown to support life, calling into question the power limit to life.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors