[ report an error in this record ]basket (0): add | show Print this page

Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports
Ibabe, A.; Rayón, F.; Martinez, J.L.; Garcia-Vazquez, E. (2020). Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports. PLoS One 15(6): e0228811. https://dx.doi.org/10.1371/journal.pone.0228811
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Ibabe, A.
  • Rayón, F.
  • Martinez, J.L.
  • Garcia-Vazquez, E., more

Abstract
    Marine debris is currently a significant source of environmental and economic problems. Floating litter can be employed by marine organisms as a surface to attach to and use as spreading vector. Human activities are promoting the expansion of potentially harmful species into novel ecosystems, endangering autochthonous communities. In this project, more than 1,000 litter items were collected and classified from five beaches eastwards the port of Gijon, in Asturias, Spain. Next generation sequencing was employed to study biofouling communities attached to items of different materials. A dominance of DNA from Florideophyceae, Dinophyceae and Arthropoda was found, and four non-indigenous species (NIS) were identified. Results showed a clear preference of Florideophyceae and Bryozoa to attach on textile surfaces versus plastic ones. Considering that these taxa contain several highly invasive species described to date, these data emphasize the potential of textile marine debris as a vector for dispersal of NIS. Moreover, the closest beaches to the port contained a more similar biota profile than the farther ones, confirming that both plastic and textile marine litter can be vectors for species dispersal from ports.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors