[ report an error in this record ]basket (0): add | show Print this page

Quantitative analysis of diverse sporomorph-derived sporopollenins
Nierop, K.G.J.; Versteegh, G.J.M.; Filley, T.R.; de Leeuw, J.W. (2019). Quantitative analysis of diverse sporomorph-derived sporopollenins. Phytochemistry 162: 207-215. https://dx.doi.org/10.1016/j.phytochem.2019.03.023
In: Phytochemistry. PERGAMON-ELSEVIER SCIENCE LTD: Oxford. ISSN 0031-9422; e-ISSN 1873-3700, more
Peer reviewed article  

Available in  Authors 

Author keywords
    (club)mosses; Ferns Horsetails; Cycad; Spores; Sporopollenin; Thermally assisted hydrolysis and methylation; [13C] tetramethylammonium hydroxide; Caffeic acid

Authors  Top 
  • Nierop, K.G.J.
  • Versteegh, G.J.M.
  • Filley, T.R.
  • de Leeuw, J.W., more

Abstract
    Over the years studies on sporopollenin have reported a wide variety of structures. However, the methods and techniques used to elucidate sporopollenin structures are highly diverse so that much is still unclear with respect to the nature and structural diversity of sporopollenins. In order to investigate the structural diversity in sporopollenin between different taxa, extant sporomorphs of ten different species ranging from a mushroom to a cycad were examined using a relatively simple and fast analytical procedure. Sporomorphs, before and after saponification, were analysed for sporopollenin composition by Thermally assisted Hydrolysis and Methylation (THM) using [13C]tetramethylammonium hydroxide ([13C]TMAH). The sporomorp chemical composition differed markedly between the groups of organisms analysed. Moreover, we not only identified the nature and relative quantities of the well-known sporopollenin constituents p-coumaric acid and ferulic acid but also many other phenolic moieties, such as caffeic acid, which appeared to be the most abundant phenolic constituent in spores of Equisetum palustre, Salvinia molesta, Cyrtomium falcatum and Anemia phyllitidis. Within the two Equisetum species analysed as well as in the closely related Azolla and Salvinia species the same suite of phenolic constituents were observed, but their relative distribution varied largely. We thus demonstrate the existence of a high structural diversity, both qualitatively and quantitatively in sporopollenins enabling future studies related to the evolution, phylogeny and (palaeo)environment of sporopollenin-producing organisms. Furthermore, a better knowledge of sporopollenin and its structural variety is of relevance to the rapidly growing application of spores and pollen as a drug delivery agent in medicine.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors