[ report an error in this record ]basket (0): add | show Print this page

GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections
Hock, R.; Bliss, A.; Marzeion, B.; Giesen, R.H.; Hirabayashi, Y.; Huss, M.; Radic, V.; Slangen, A.B.A. (2019). GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65(251): 453-467. https://dx.doi.org/10.1017/jog.2019.22
In: Journal of Glaciology. International Glaciological Society: Cambridge. ISSN 0022-1430; e-ISSN 1727-5652, more
Peer reviewed article  

Available in  Authors 

Author keywords
    glacier modeling; glacier mass balance; ice and climate; mountainglaciers

Authors  Top 
  • Hock, R.
  • Bliss, A.
  • Marzeion, B.
  • Giesen, R.H.
  • Hirabayashi, Y.
  • Huss, M.
  • Radic, V.
  • Slangen, A.B.A., more

Abstract
    Global-scale 21st-century glacier mass change projections from six published global glacier models are systematically compared as part of the Glacier Model Intercomparison Project. In total 214 projections of annual glacier mass and area forced by 25 General Circulation Models (GCMs) and four Representative Concentration Pathways (RCP) emission scenarios and aggregated into 19 glacier regions are considered. Global mass loss of all glaciers (outside the Antarctic and Greenland ice sheets) by 2100 relative to 2015 averaged over all model runs varies from 18 ± 7% (RCP2.6) to 36 ± 11% (RCP8.5) corresponding to 94 ± 25 and 200 ± 44 mm sea-level equivalent (SLE), respectively. Regional relative mass changes by 2100 correlate linearly with relative area changes. For RCP8.5 three models project global rates of mass loss (multi-GCM means) of >3 mm SLE per year towards the end of the century. Projections vary considerably between regions, and also among the glacier models. Global glacier mass changes per degree global air temperature rise tend to increase with more pronounced warming indicating that mass-balance sensitivities to temperature change are not constant. Differences in glacier mass projections among the models are attributed to differences in model physics, calibration and downscaling procedures, initial ice volumes and varying ensembles of forcing GCMs.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors