[ report an error in this record ]basket (0): add | show Print this page

Modelling the interactions of the hydrothermal mussel Bathymodiolus azoricus with vent fluid
Husson, B.; Sarrazin, J.; van Oevelen, D.; Sarradin, P.-M.; Soetaert, K.; Menesguen, A. (2018). Modelling the interactions of the hydrothermal mussel Bathymodiolus azoricus with vent fluid. Ecol. Model. 377: 35-50. https://doi.org/10.1016/j.ecolmodel.2018.03.007
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800; e-ISSN 1872-7026, more
Peer reviewed article  

Available in  Authors 

Keyword
    Bathymodiolus azoricus Cosel & Comtet, 1999 [WoRMS]
Author keywords
    Carbon flux model; Bathymodiolus azoricus; Eiffel Tower; Foundation species; Energy partitioning; Environmental conditions; Biomass; Hydrothermal ecosystems

Authors  Top 
  • Husson, B.
  • Sarrazin, J.
  • van Oevelen, D., more
  • Sarradin, P.-M.
  • Soetaert, K., more
  • Menesguen, A.

Abstract
    In the 40 years since the discovery of the rich faunal community around hydrothermal vents, many studies have clearly shown that environmental conditions have a strong influence on species distribution in these habitats. Nevertheless, the mechanisms that determine the spatial and temporal dynamics of species’ responses to vent conditions remain elusive. Metabolic studies to assess faunal interactions with vent fluid are particularly difficult to perform in the deep sea and are generally executed in isolation ex situ. Available data mainly concern foundation species, which visually dominate these ecosystems. This work uses a modelling approach to integrate biotic and abiotic data that have been acquired through the years on Eiffel Tower, a large sulphide edifice located on the Lucky Strike vent field on the Mid-Atlantic Ridge, and particularly on its dominant species, Bathymodiolus azoricus. A carbon-flux model was built using seven state variables: the biomass of mussels and their associated thiotrophic (SOX) and methanotrophic (MOX) symbionts and the ambient concentrations of oxygen, dihydrogen sulphide, methane and (particulate and dissolved) organic carbon. Temperature of the surrounding water and mussel density were the forcing variables in the system. Results showed no statistically significant differences between predicted and observed mussel biomass and estimates of energy partitioning within the mussel were in the range of available data. Metabolic rates were generally rather low and greatly reduced by a temperature effect in the coldest samples. These low metabolic rates imply a long lifespan for B. azoricus. Simulations suggest that they would strongly hinder re-establishment and resilience of mussel biomass. However, because symbionts respond quickly to changes in vent fluid, mussels would be able to buffer strong variations in the hydrothermal fluid supply. The model showed that if mussels fed indifferently on both types of symbionts, coexistence of MOX and SOX cannot be reached, thereby likely favouring hypotheses of competition for space inside the mussel gills and/or a differential use of the production of each symbiont. Model predictions are highly dependent on current knowledge, and the results presented here highlight the need for more quantitative data on the biology of B. azoricus across different size classes, on its interactions with symbionts, and in varying environmental concentrations in its substrates.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors