[ report an error in this record ]basket (0): add | show Print this page

The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents
Brasseur, L.; Hennebert, E.; Fievez, L.; Caulier, G.; Bureau, F.; Tafforeau, L.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. (2017). The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Mar. Drugs 15(6): 179. https://dx.doi.org/10.3390/md15060179
In: Marine Drugs. Molecular Diversity Preservation International (MDPI): Basel. ISSN 1660-3397; e-ISSN 1660-3397, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    spinochromes; antibacterial; antioxidant; cytotoxicity;pro-inflammatory; polyhydroxynaphthoquinones; sea urchin; pigments

Authors  Top 
  • Brasseur, L., more
  • Hennebert, E., more
  • Fievez, L.
  • Caulier, G., more
  • Bureau, F.
  • Tafforeau, L., more

Abstract
    Spinochromes are principally known to be involved in sea urchin pigmentation as well as for their potentially interesting pharmacological properties. To assess their biological role in sea urchin physiology, experiments are undertaken on crude extracts from four species and on four isolated spinochromes in order to test their antibacterial, antioxidant, inflammatory and cytotoxic activities. First, the antibacterial assays show that the use of crude extracts as representatives of antibacterial effects of spinochromes are inaccurate. The assays on purified spinochromes showed a decrease in the growth of four strains with an intensity depending on the spinochromes/bacteria system, revealing the participation of spinochromes in the defense system against microorganisms. Secondly, in the 2,2-diphenyl-1-picrylhydrazyl antioxidant assays, spinochromes show an enhanced activity compared to the positive control. This latter observation suggests their involvement in ultraviolet radiation protection. Third, spinochromes present a pro-inflammatory effect on lipopolysaccharide-stimulated macrophages, highlighting their possible implication in the sea urchin immune system. Finally, cytotoxicity assays based on Trypan blue exclusion, performed in view of their possible future applications as drugs, show a weak cytotoxicity of these compounds against human cells. In conclusion, all results confirm the implication of spinochromes in sea urchin defense mechanisms against their external environment and reveal their potential for pharmacological and agronomical industries.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors