[ report an error in this record ]basket (0): add | show Print this page

Bergy bit and melt water trajectories in Godthåbsfjord (SW Greenland) observed by the Expendable Ice Tracker
Carlson, D.F.; Boone, W.; Meire, L.; Abermann, J.; Rysgaard, S. (2017). Bergy bit and melt water trajectories in Godthåbsfjord (SW Greenland) observed by the Expendable Ice Tracker. Front. Mar. Sci. 4: 276. https://dx.doi.org/10.3389/fmars.2017.00276
In: Frontiers in Marine Science. Frontiers Media: Lausanne. e-ISSN 2296-7745, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Greenland Ice Sheet; bergy bit; GPS tracker; surface drifter; Godthåbsfjord

Authors  Top 
  • Carlson, D.F.
  • Boone, W., more
  • Meire, L., more
  • Abermann, J.
  • Rysgaard, S.

Abstract
    Icebergs and bergy bits makes up a significant component of the total freshwater flux from the Greenland Ice Sheet to the ocean. Observations of iceberg trajectories are biased toward larger icebergs and, as a result, the drift characteristics of smaller icebergs and bergy bits are poorly understood. In an attempt to fill this critical knowledge gap, we developed the open-source EXpendable Ice TrackEr (EXITE). EXITE is a low-cost, satellite-tracked GPS beacon capable of high-resolution temporal measurements over extended deployment periods (30 days or more). Furthermore, EXITE can transform to a surface drifter when its host iceberg capsizes or fragments. Here we describe basic construction of an EXITE beacon and present results from a deployment in Godthåbsfjord (SW Greenland) in August 2016. Overall, EXITE trajectories show out-fjord surface transport, in agreement with a simple estuarine circulation paradigm. However, eddies and abrupt wind-driven reversals reveal complex surface transport pathways at time scales of hours to days.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors