[ report an error in this record ]basket (0): add | show Print this page

Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity
Edgar, G.J.; Alexander, T.J.; Lefcheck, J.S.; Bates, A.E.; Kininmonth, S.J.; Thomson, R.J.; Duffy, J.E.; Costello, M.J.; Stuart-Smith, R.D. (2017). Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. Science Advances 3(10): e1700419. https://dx.doi.org/10.1126/sciadv.1700419
In: Science Advances. AAAS: New York. e-ISSN 2375-2548, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Edgar, G.J.
  • Alexander, T.J.
  • Lefcheck, J.S.
  • Bates, A.E.
  • Kininmonth, S.J.
  • Thomson, R.J.
  • Duffy, J.E.
  • Costello, M.J., more
  • Stuart-Smith, R.D.

Abstract
    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors