[ report an error in this record ]basket (0): add | show Print this page

Imaging air volume fraction in sea ice using non-destructive X-ray tomography
Crabeck, O.; Galley, R.; Delille, B.; Else, B.; Geilfus, N.-X.; Lemes, M.; Des Roches, M.; Francus, P.; Tison, J.-L.; Rysgaard, S. (2016). Imaging air volume fraction in sea ice using non-destructive X-ray tomography. Cryosphere 10(3): 1125-1145. https://dx.doi.org/10.5194/tc-10-1125-2016
In: The Cryosphere. Copernicus: Göttingen. ISSN 1994-0416; e-ISSN 1994-0424, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Crabeck, O., more
  • Galley, R.
  • Delille, B., more
  • Else, B.
  • Geilfus, N.-X.
  • Lemes, M.
  • Des Roches, M.
  • Francus, P.
  • Tison, J.-L., more
  • Rysgaard, S.

Abstract
    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4–22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions  <  2 %, the ice–air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø  <  1 mm), large bubbles (1 mm  <  Ø  <  5 mm) and macro bubbles (Ø  >  5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors