[ report an error in this record ]basket (0): add | show Print this page

Methods for the study of marine biodiversity
Costello, M.J.; Basher, Z.; McLeod, L.; Asaad, I.; Claus, S.; Vandepitte, L.; Yasuhara, M.; Gislason, H.; Edwards, M.; Appeltans, W.; Enevoldsen, H.; Edgar, G.J.; Miloslavich, P.; De Monte, S.; Pinto, I.S.; Obura, D.; Bates, A.E. (2017). Methods for the study of marine biodiversity, in: Walters, M. et al. The GEO handbook on biodiversity observation networks. pp. 129-163. https://dx.doi.org/10.1007/978-3-319-27288-7_6
In: Walters, M.; Scholes, R.J. (Ed.) (2017). The GEO handbook on biodiversity observation networks. Springer International Publishing: Cham. ISBN 978-3-319-27288-7. 326 pp. https://dx.doi.org/10.1007/978-3-319-27288-7, more

Available in  Authors 

Keywords
    Biodiversity
    Methods
    Monitoring
    Sampling
    Marine/Coastal

Authors  Top 
  • Costello, M.J., more
  • Basher, Z.
  • McLeod, L.
  • Asaad, I.
  • Claus, S., more
  • Vandepitte, L., more
  • Yasuhara, M.
  • Gislason, H.
  • Edwards, M.
  • Appeltans, W., more
  • Enevoldsen, H.
  • Edgar, G.J.
  • Miloslavich, P.
  • De Monte, S.
  • Pinto, I.S.
  • Obura, D.
  • Bates, A.E.

Abstract
    Recognition of the threats to biodiversity and its importance to society has led to calls for globally coordinated sampling of trends in marine ecosystems. As a step to defining such efforts, we review current methods of collecting and managing marine biodiversity data. A fundamental component of marine biodiversity is knowing what, where, and when species are present. However, monitoring methods are invariably biased in what taxa, ecological guilds, and body sizes they collect. In addition, the data need to be placed, and/or mapped, into an environmental context. Thus a suite of methods will be needed to encompass representative components of biodiversity in an ecosystem. Some sampling methods can damage habitat and kill species, including unnecessary bycatch. Less destructive alternatives are preferable, especially in conservation areas, such as photography, hydrophones, tagging, acoustics, artificial substrata, light-traps, hook and line, and live-traps. Here we highlight examples of operational international sampling programmes and data management infrastructures, notably the Continuous Plankton Recorder, Reef Life Survey, and detection of Harmful Algal Blooms and MarineGEO. Data management infrastructures include the World Register of Marine Species for species nomenclature and attributes, the Ocean Biogeographic Information System for distribution data, Marine Regions for maps, and Global Marine Environmental Datasets for global environmental data. Existing national sampling programmes, such as fishery trawl surveys and intertidal surveys, may provide a global perspective if their data can be integrated to provide useful information. Less utilised and emerging sampling methods, such as artificial substrata, light-traps, microfossils and eDNA also hold promise for sampling the less studied components of biodiversity. All of these initiatives need to develop international standards and protocols, and long-term plans for their governance and support.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors