[ report an error in this record ]basket (0): add | show Print this page

The coordinated use of synchrotron spectroelectrochemistry for corrosion studies on heritage metals
Adriaens, A.; Dowsett, M. (2010). The coordinated use of synchrotron spectroelectrochemistry for corrosion studies on heritage metals. Accounts of Chemical Research 43(6): 927-935. https://dx.doi.org/10.1021/ar900269f
In: Accounts of Chemical Research. AMER CHEMICAL SOC: Washington. ISSN 0001-4842; e-ISSN 1520-4898, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Adriaens, A.
  • Dowsett, M., more

Abstract
    Corrosion is a major source of degradation in heritage metal objects, and any remedial measures are subject to a strong (Western) ethic that favors conservation as opposed to restoration. 0 Accordingly, major scientific challenges exist for developing appropriate treatment methods to stabilize and protect artifacts after they are recovered from an archaeological site, both before and during their display or storage in a museum. Because inappropriate treatments can cause irreversible damage to irreplaceable objects, it is crucial that the chemical processes involved are fully understood and characterized before any preservation work is undertaken. In this regard, large infrastructural facilities such as synchrotrons, neutron sources, and partide accelerators provide a wealth of analytical possibilities, unavailable in smaller scale laboratories. In general, the intensity of the radiation available allows measurements on a short time scale or with high spatial resolution (or both), so heterogeneous changes induced by a chemical process can be recorded while they occur. The penetrative nature of the radiation (e.g., X-rays, protons, or neutrons) also allows a sample to be studied in air. If necessary, complete artifacts (such as paintings or statuettes) can be examined. In situ analysis in a controlled environment, such as a liquid or corrosive atmosphere, also becomes an exciting possibility. Finally, there are many complementary techniques (local atomic structure or crystal structure determination, macroscopic 3-D imaging (tomographies), imaging chemical analysis, and so on) so the many distinct details of a problem can be thoroughly explored. In this Account, we discuss the application of this general philosophy to studies of corrosion and its prevention in cultural heritage metals, focusing on our recent work on copper alloys. More specifically, we use synchrotron-based techniques to evaluate the use of corrosion potential measurements as a possible monitoring method for copper-based objects recovered from marine environments. The extraction of chlorides from such artifacts is a process that must take place before the artifacts are put on display or stored, because air exposure of untreated metal will result in severe damage or loss in as little as a few weeks. Chloride is removed by soaking the artifact for up to two years in tap water or dilute sodium sesquicarbonate, with regular solution changes. Our research supports the effectiveness of this treatment for thin nantokite (copper(I) chloride) layers, but it raises questions for copper hydroxychlorides (atacamite and paratacamite), especially when these minerals are trapped in fissures. Electrochemical parameters such as the corrosion potential are shown to be insensitive to the physical presence of large hydroxychloride coverages if they overlie a cuprite (Cu20) layer. X-ray absorption spectroscopy proves to be a good monitor for the chloride in solution over the working electrode, whereas X-ray diffraction offers the potential for real-time measurement of the surface chloride composition. In principle, the two techniques together offer the possibility of monitoring Normal

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors