[ report an error in this record ]basket (0): add | show Print this page

Power absorption by closely spaced point absorbers in constrained conditions
De Backer, G.; Vantorre, M.; Beels, C.; De Rouck, J.; Frigaard, P. (2010). Power absorption by closely spaced point absorbers in constrained conditions. IET Renew. Power Gener. 4(6): 579-591. https://dx.doi.org/10.1049/iet-rpg.2009.0188
In: IET Renewable Power Generation. Institute for Engineering and Technology: Hertford. ISSN 1752-1416; e-ISSN 1752-1424, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • De Rouck, J., more
  • Frigaard, P.

Abstract
    The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves, but also on the position and behaviour of the other buoys Applying the optimal control values for a single buoy to multiple closely spaced buoys results in a suboptimal solution for the array Other ways to determine the PTO parameters are diagonal optimisation (DO) and individual optimisation These methods are applied to two array layouts consisting of 12 buoys in a staggered grid and 21 buoys in an aligned grid Compared to DO, it was found that individually optimising the CP increased the energy absorption at Westhinder with about 16-18% for the two layouts, respectively

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors