[ report an error in this record ]basket (0): add | show Print this page

Contourites at the eastern Agulhas Ridge and Cape Rise seamount shaped by Southern Ocean derived water masses
Gruetzner, J.; Uenzelmann-Neben, G. (2014). Contourites at the eastern Agulhas Ridge and Cape Rise seamount shaped by Southern Ocean derived water masses, in: Van Rooij, D. et al. (Ed.) Book of Abstracts. 2nd Deep-Water Circulation Congress: The Contourite Log-book. Ghent, Belgium, 10-12 September 2014. VLIZ Special Publication, 69: pp. 77-78
In: Van Rooij, D.; Rüggeberg, A. (Ed.) (2014). Book of Abstracts. 2nd Deep-Water Circulation Congress: The Contourite Log-book. Ghent, Belgium, 10-12 September 2014. VLIZ Special Publication, 69. Ghent University, Department of Geology and Soil Science/Flanders Marine Institute (VLIZ): Oostende. xviii, 152 pp., more
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950, more

Available in  Authors 
Document type: Summary

Keywords
    Earth sciences > Geology > Stratigraphy > Seismic stratigraphy
    Motion > Water motion > Circulation > Water circulation > Ocean circulation > Thermohaline circulation
    Marine/Coastal
Author keywords
    Contourite drift; Agulhas Ridge

Authors  Top 
  • Gruetzner, J.
  • Uenzelmann-Neben, G.

Abstract
    Constituting a topographic barrier the Agulhas Ridge has a strong influence on the exchange of water masses between high and lower latitudes in the South Atlantic. While Antarctic Bottomwater (AABW) and Circumpolar Deepwater (CDW) originating in the Southern Ocean provide the inflow of cold water masses in larger water depths, the Agulhas leakage is the main source of warm and salty waters carried towards the Subpolar North Atlantic. In order to track past changes in this circulation pattern 5400km of high-resolution multichannel seismic reflection data were acquired during RV Maria S. Merian cruise MSM 19/2 in the Agulhas Ridge area. Here we present first results from the eastern plateau of the ridge and the area between the plateau and the Cape Rise Seamount. Via crosscorrelation with ODP Leg 177 drillsites, prominent reflectors marking the early Oligocene, the middle Miocene and the base of the Pleistocene were identified. Sediment drifts deposited between these erosional surfaces indicate steady contour current acitivity at various depth levels. Extensive current derived deposits in this area and a mounded drift northwest of the Cape Rise Seamounts formed by clockwise circulating bottom water appear to have been built contemporaneously by AABW flow after the early Oligocene.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors