[ report an error in this record ]basket (0): add | show Print this page

On the formulation of snow thermal conductivity in large-scale sea ice models
Lecomte, O.; Fichefet, T.; Vancoppenolle, M.; Domine, F.; Massonnet, F.; Mathiot, P.; Morin, S.; Barriat, P.-Y. (2013). On the formulation of snow thermal conductivity in large-scale sea ice models. J. Adv. Model. Earth Syst. 5(3): 542-557. dx.doi.org/10.1002/jame.20039
In: Journal of Advances in Modeling Earth Systems. American Geophysical Union: Washington. e-ISSN 1942-2466, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    sea ice; snow; model; thermodynamics; mass balance

Authors  Top 
  • Lecomte, O., more
  • Fichefet, T., more
  • Vancoppenolle, M.
  • Domine, F.
  • Massonnet, F., more
  • Mathiot, P., more
  • Morin, S.
  • Barriat, P.-Y., more

Abstract
    An assessment of the performance of a state-of-the-art large-scale coupled sea ice-ocean model, including a new snow multilayer thermodynamic scheme, is performed. Four 29 year long simulations are compared against each other and against sea ice thickness and extent observations. Each simulation uses a separate parameterization for snow thermophysical properties. The first simulation uses a constant thermal conductivity and prescribed density profiles. The second and third parameterizations use typical power-law relationships linking thermal conductivity directly to density (prescribed as in the first simulation). The fourth parameterization is newly developed and consists of a set of two linear equations relating the snow thermal conductivity and density to the mean seasonal wind speed. Results show that simulation 1 leads to a significant overestimation of the sea ice thickness due to overestimated thermal conductivity, particularly in the Northern Hemisphere. Parameterizations 2 and 4 lead to a realistic simulation of the Arctic sea ice mean state. Simulation 3 results in the underestimation of the sea ice basal growth in both hemispheres, but is partly compensated by lateral growth and snow ice formation in the Southern Hemisphere. Finally, parameterization 4 improves the simulated Snow Depth Distributions by including snow packing by wind, and shows potential for being used in future works. The intercomparison of all simulations suggests that the sea ice model is more sensitive to the snow representation in the Arctic than it is in the Southern Ocean, where the sea ice thickness is not driven by temperature profiles in the snow.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors