[ report an error in this record ]basket (0): add | show Print this page

Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification
Andersson, A.J.; Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification, in: Carlson, C.A. et al. Ann. Rev. Mar. Sci. 5. Annual Review of Marine Science, 5: pp. 321-348. https://dx.doi.org/10.1146/annurev-marine-121211-172241
In: Carlson, C.A.; Giovannoni, S.J. (Ed.) (2013). Ann. Rev. Mar. Sci. 5. Annual Review of Marine Science, 5. Annual Reviews: Palo Alto. ISBN 978-0-8243-4505-1. 569 pp., more
In: Annual Review of Marine Science. Annual Reviews: Palo Alto, Calif. ISSN 1941-1405; e-ISSN 1941-0611, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    CO2, CaCO3, aragonite, Mg calcite, calcification

Authors  Top 
  • Andersson, A.J.
  • Gledhill, D.

Abstract
    The persistence of carbonate structures on coral reefs is essential in providing habitats for a large number of species and maintaining the extraordinary biodiversity associated with these ecosystems. As a consequence of ocean acidification (OA), the ability of marine calcifiers to produce calcium carbonate (CaCO3) and their rate of CaCO3 production could decrease while rates of bioerosion and CaCO3 dissolution could increase, resulting in a transition from a condition of net accretion to one of net erosion. This would have negative consequences for the role and function of coral reefs and the eco-services they provide to dependent human communities. In this article, we review estimates of bioerosion, CaCO3 dissolution, and net ecosystem calcification (NEC) and how these processes will change in response to OA. Furthermore, we critically evaluate the observed relationships between NEC and seawater aragonite saturation state (Oa). Finally, we propose that standardized NEC rates combined with observed changes in the ratios of dissolved inorganic carbon to total alkalinity owing to net reef metabolism may provide a biogeochemical tool to monitor the effects of OA in coral reef environments.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors