[ report an error in this record ]basket (0): add | show Print this page

Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion
Lenartz, F.; Mourre, B.; Barth, A.; Beckers, J.-M.; Vandenbulcke, L.; Rixen, M. (2010). Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion. Geophys. Res. Lett. 37(L19606). dx.doi.org/10.1029/2010GL044591
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Lenartz, F., more
  • Mourre, B.
  • Barth, A., more
  • Beckers, J.-M., more
  • Vandenbulcke, L., more
  • Rixen, M., more

Abstract
    An innovative multi-model fusion technique is proposed to improve short-term ocean temperature forecasts: the three-dimensional super-ensemble. In this method, a Kalman Filter is used to adjust three-dimensional model weights over a past learning period, allowing to give more importance to recent observations, and take into account spatially varying model skills. The predictive performance is evaluated against SST analyses, CTD casts and gliders tracks collected during the Ligurian Sea Cal/Val 2008 experiment. Statistical results not only show a very significant bias reduction of this multi-model forecast in comparison with the individual models, their ensemble mean and a single-weight-per-model version of the super-ensemble, but also the improvement of other pattern-related skills. In a 48-h forecast experiment, and with respect to the ensemble mean, surface and subsurface root-mean-square differences with observations are reduced by 57% and 35% respectively, making this new technique a suitable non-intrusive post-processing method for multi-model operational forecasting systems.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors