[ report an error in this record ]basket (0): add | show Print this page

Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area
Greinert, J.; McGinnis, D.F.; Naudts, L.; Linke, P.; De Batist, M. (2010). Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area. JGR: Oceans 115(C1): 18 pp. https://dx.doi.org/10.1029/2009JC005381
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Greinert, J., more
  • McGinnis, D.F.
  • Naudts, L., more
  • Linke, P.
  • De Batist, M., more

Abstract
    Bubble transport of methane from shallow seep sites in the Black Sea west of the Crimea Peninsula between 70 and 112 m water depth has been studied by extrapolation of results gained through different hydroacoustic methods and direct sampling. Ship-based hydroacoustic echo sounders can locate bubble releasing seep sites very precisely and facilitate their correlation with geological or other features at the seafloor. Here, the backscatter strength of a multibeam system was integrated with single-beam data to estimate the amount of seeps/m2 for different backscatter intensities, resulting in 2709 vents in total. Direct flux measurements by submersible revealed methane fluxes from individual vents of 0.32–0.85 l/min or 14.5–37.8 mmol/min at ambient pressure and temperature conditions. A conservative estimate of 30 mmol/min per site was used to estimate the flux into the water to be 1219–1355 mmol/s. The flux to the atmosphere was calculated by applying a bubble dissolution model taking release depth, temperature, gas composition, and bubble size spectra into account. The flux into the atmosphere (3930–4533 mol/d) or into the mixed layer (6186–6899 mol/d) from the 21.8 km2 large study area is three times higher than independently measured fluxes of dissolved methane for the same area using geochemical methods (1030–2495 mol/d). The amount of methane dissolving in the mixed layer is 2256–2366 mol/d. This close match shows that the hydroacoustic approach for extrapolating the number of seeps/m2 and the applied bubble dissolution model are suitable to extrapolate methane fluxes over larger areas.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors