[ report an error in this record ]basket (0): add | show Print this page

Classifying hyperspectral airborne imagery for vegetation survey along coastlines
Kempeneers, P.; Deronde, B.; Bertels, L.; Debruyn, W.; De Backer, S.; Scheunders, P. (2004). Classifying hyperspectral airborne imagery for vegetation survey along coastlines, in: Proceedings of Geoscience and Remote Sensing Symposium, 20-24 september 2004. Anchorage, Alaska. Volume 2. pp. 1475-1478
In: (2004). Proceedings of Geoscience and Remote Sensing Symposium, 20-24 september 2004. Anchorage, Alaska. Volume 2. IEEE[s.l.]. ISBN 0-7803-8742-2, more

Available in  Authors | Dataset 
Document type: Conference paper

Keywords
    Hyperspectral imaging
    Remote sensing > Geosensing
    Remote sensing > Geosensing > Airborne sensing
    Remote sensors > Remote detectors > Remote sensing
    ANE, Belgium, Belgian Coast [Marine Regions]
    Marine/Coastal

Authors  Top | Dataset 
  • Debruyn, W., more
  • De Backer, S.
  • Scheunders, P.

Abstract
    This paper studies the potential of airborne hyperspectral imagery for classifying vegetation along the Belgian coastlines. Here, the aim is to build vegetation maps using automatic classification. Besides a general linear multiclass classifier (Linear Discriminant Analysis), several strategies for combining binary classifiers are proposed: one based on a hierarchical decision tree, one based on the Hamming distance between the codewords obtained by binary classifiers and one based on the coupling of posterior probabilities. In addition, a new procedure is proposed for spatial classification smoothing. This procedure takes into account spatial information by letting the decision for classification of a pixel depend on the classification probabilities of neighboring pixels. This is shown to render smoother classification images.

Dataset
  • Hyperspectrale vliegtuigopnamen duinvegetatie Vlaamse kust, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset