[ report an error in this record ]basket (0): add | show Print this page

Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia
Wolanski, E.; Colin, P.; Naithani, J.; Deleersnijder, E.; Golbuu, Y. (2004). Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Est., Coast. and Shelf Sci. 60(4): 705-716. dx.doi.org/10.1016/j.ecss.2004.03.009
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015, more
Peer reviewed article  

Available in  Authors 

Keywords
    Reefs > Biogenic deposits > Coral reefs
    Topographic features > Landforms > Islands > Oceanic islands
    Water waves > Internal waves
    ISEW, Caroline I., Palau I. [Marine Regions]
    Marine/Coastal
Author keywords
    internal waves; oceanic islands; coral reefs; Micronesia

Authors  Top 
  • Wolanski, E., more
  • Colin, P.
  • Naithani, J., more
  • Deleersnijder, E., more
  • Golbuu, Y.

Abstract
    Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50-100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ˜10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors