[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [352985]
Fluid dynamics experiments for planetary interiors
Le Bars, M.; Barik, A.; Burmann, F.; Lathrop, D.P.; Noir, J.; Schaeffer, N.; Triana, S.A. (2022). Fluid dynamics experiments for planetary interiors. Surveys in Geophysics 43(1): 229-261. https://dx.doi.org/10.1007/s10712-021-09681-1
In: Surveys in Geophysics. Kluwer Academic Publishers: Dordrecht; Tokyo; Lancaster; Boston. ISSN 0169-3298; e-ISSN 1573-0956, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Planetary cores; Subsurface oceans; Rotational fluid dynamics; Waves; Instabilities; Turbulence

Authors  Top 
  • Le Bars, M.
  • Barik, A.
  • Burmann, F.
  • Lathrop, D.P.
  • Noir, J.
  • Schaeffer, N.
  • Triana, S.A., more

Abstract
    Understanding fluid flows in planetary cores and subsurface oceans, as well as their signatures in available observational data (gravity, magnetism, rotation, etc.), is a tremendous interdisciplinary challenge. In particular, it requires understanding the fundamental fluid dynamics involving turbulence and rotation at typical scales well beyond our day-to-day experience. To do so, laboratory experiments are fully complementary to numerical simulations, especially in systematically exploring extreme flow regimes for long duration. In this review article, we present some illustrative examples where experimental approaches, complemented by theoretical and numerical studies, have been key for a better understanding of planetary interior flows driven by some type of mechanical forcing. We successively address the dynamics of flows driven by precession, by libration, by differential rotation, and by boundary topography.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors