[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [352706]
Challenging the highstand-dormant paradigm for land-detached submarine canyons
Heijnen, M.S.; Mienis, F.; Gates, A.R.; Bett, B.J.; Hall, R.A.; Hunt, J.; Kane, I.A.; Pebody, C.; Huvenne, V.A.I.; Soutter, E.L.; Clare, M.A. (2022). Challenging the highstand-dormant paradigm for land-detached submarine canyons. Nature Comm. 13(1): 3448. https://dx.doi.org/10.1038/s41467-022-31114-9

Additional data:
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Heijnen, M.S.
  • Mienis, F., more
  • Gates, A.R.
  • Bett, B.J.
  • Hall, R.A.
  • Hunt, J.
  • Kane, I.A.
  • Pebody, C.
  • Huvenne, V.A.I., more
  • Soutter, E.L.
  • Clare, M.A.

Abstract
    Sediment, nutrients, organic carbon and pollutants are funnelled down submarine canyons from continental shelves by sediment-laden flows called turbidity currents, which dominate particulate transfer to the deep sea. Post-glacial sea-level rise disconnected more than three quarters of the >9000 submarine canyons worldwide from their former river or long-shore drift sediment inputs. Existing models therefore assume that land-detached submarine canyons are dormant in the present-day; however, monitoring has focused on land-attached canyons and this paradigm remains untested. Here we present the most detailed field measurements yet of turbidity currents within a land-detached submarine canyon, documenting a remarkably similar frequency (6 yr−1) and speed (up to 5–8 ms−1) to those in large land-attached submarine canyons. Major triggers such as storms or earthquakes are not required; instead, seasonal variations in cross-shelf sediment transport explain temporal-clustering of flows, and why the storm season is surprisingly absent of turbidity currents. As >1000 other canyons have a similar configuration, we propose that contemporary deep-sea particulate transport via such land-detached canyons may have been dramatically under-estimated.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors