[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [337225]
Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater
Dingenen, F.; Verbruggen, S.W. (2021). Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renew. Sust. Energ. Rev. 142: 110866. https://hdl.handle.net/10.1016/j.rser.2021.110866
In: Renewable & Sustainable Energy Reviews. Elsevier/Elsevier Science: Oxford. ISSN 1364-0321; e-ISSN 1879-0690, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Seawater splitting; Hydrogen; Photocatalysis; Photoelectrochemical cells; Electrolysis; Chloride

Authors  Top 
  • Dingenen, F., more
  • Verbruggen, S.W., more

Abstract
    Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors