[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [330763]
Assessment and integration of bulk and component‐specific methods for identifying mineral magnetic assemblages in environmental magnetism
Qian, Y.; Roberts, A.P.; Liu, Y.; Hu, P.; Zhao, X.; Heslop, D.; Grant, K.M.; Rohling, E.J.; Hennekam, R.; Li, J. (2020). Assessment and integration of bulk and component‐specific methods for identifying mineral magnetic assemblages in environmental magnetism. JGR: Solid Earth 125(8): e2019JB019024. https://doi.org/10.1029/2019jb019024

Additional data:
In: Journal of Geophysical Research-Solid Earth. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9313; e-ISSN 2169-9356, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Qian, Y.
  • Roberts, A.P.
  • Liu, Y.
  • Hu, P.
  • Zhao, X.
  • Heslop, D.
  • Grant, K.M.
  • Rohling, E.J.
  • Hennekam, R., more
  • Li, J.

Abstract
    Magnetic parameters are used extensively to interpret magnetic mineral assemblage variations in environmental studies. Conventional room temperature measurements of bulk magnetic parameters, like the anhysteretic remanent magnetization (ARM) and the ratio of the susceptibility of ARM to magnetic susceptibility (χ), can reflect, respectively, magnetic mineral concentration and/or particle size variations in sediments, although they are not necessarily well suited for identifying magnetic components within individual magnetic mineral assemblages. More advanced techniques, such as first‐order reversal curve (FORC) diagrams and low‐temperature (LT) magnetic measurements, can enable detailed discrimination of magnetic assemblages. Here, we integrate conventional bulk magnetic measurements alongside FORC diagrams, LT measurements, and X‐ray fluorescence core‐scan data, transmission electron microscope observations, and principal component analysis of FORC diagrams to identify and quantify magnetic mineral assemblages in eastern Mediterranean sediments. The studied sediments were selected because they contain complexly varying mixtures of detrital, biogenic, and diagenetically altered magnetic mineral assemblages that were deposited under varying oxic (organic‐poor marls) to anoxic (organic‐rich sapropels) conditions. Conventional bulk magnetic parameters provide continuous records of environmental magnetic variations, while more time‐consuming LT and FORC measurements on selected samples provide direct ground‐truthing of mineral magnetic assemblages that enables calculation of magnetization contributions of different end members. Thus, a combination of conventional bulk parameters and advanced magnetic techniques can provide detailed records from which the meaning of environmental magnetic signals can be unlocked.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors