[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [322954]
On the multi-fractal scaling properties of sea ice deformation
Rampal, P.; Dansereau, V.; Olason, E.; Bouillon, S.; Williams, T.; Korosov, A.; Samaké, A. (2019). On the multi-fractal scaling properties of sea ice deformation. Cryosphere 13(9): 2457-2474. https://dx.doi.org/10.5194/tc-13-2457-2019
In: The Cryosphere. Copernicus: Göttingen. ISSN 1994-0416; e-ISSN 1994-0424, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Rampal, P.
  • Dansereau, V.
  • Olason, E.
  • Bouillon, S., more
  • Williams, T.
  • Korosov, A.
  • Samaké, A.

Abstract
    In this paper, we evaluate the neXtSIM sea ice model with respect to the observed scaling invariance properties of sea ice deformation in the spatial and temporal domains. Using an Arctic setup with realistic initial conditions, state-of-the-art atmospheric reanalysis forcing and geostrophic currents retrieved from satellite data, we show that the model is able to reproduce the observed properties of this scaling in both the spatial and temporal domains over a wide range of scales, as well as their multi-fractality. The variability of these properties during the winter season is also captured by the model. We also show that the simulated scaling exhibits a space-time coupling, a suggested property of brittle deformation at geophysical scales. The ability to reproduce the multi-fractality of this scaling is crucial in the context of downscaling model simulation outputs to infer sea ice variables at the sub-grid scale and also has implications for modeling the statistical properties of deformation-related quantities, such as lead fractions and heat and salt fluxes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors