[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [286157]
Epigenetics in an ecotoxicological context
Vandegehuchte, M.B.; Janssen, C.R. (2014). Epigenetics in an ecotoxicological context. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 764-765: 36-45. https://dx.doi.org/10.1016/j.mrgentox.2013.08.008
In: Mutation Research. Genetic Toxicology and Environmental Mutagenesis. Elsevier: Tokyo; Oxford; New York; Amsterdam; Lausanne; Shannon. ISSN 1383-5718; e-ISSN 1879-3592, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine/Coastal; Brackish water; Fresh water; Terrestrial
Author keywords
    Chemicals; Stress ecology; DNA methylation; Phenotype; Epigenetic changes; Transgenerational stress resistance

Authors  Top 
  • Vandegehuchte, M.B., more
  • Janssen, C.R., more

Abstract
    Epigenetics can play a role in interactions between chemicals and exposed species, between species and abiotic ecosystem components or between species of the same or another population in a community. Technological progress and advanced insights into epigenetic processes have led to the description of epigenetic features (mainly DNA methylation) in many ecologically relevant species: algae, plants, several invertebrates and fish. Epigenetic changes in plants, insects and cladocerans have been reported to be induced by various environmental stress factors including nutrition or water deficiency, grazing, light or temperature alterations, social environment, and dissolved organic matter concentrations. As regards chemicals, studies in rats and mice exposed to specific pesticides, hydrocarbons, dioxins, and endocrine disrupting chemicals demonstrated the induction of epigenetic changes, suggesting the need for further research with these substances in an ecotoxicological context. In fish and plants, exposure to polyaromatic hydrocarbons, metals, and soluble fractions of solid waste affected the epigenetic status. A novel concept in ecotoxicological epigenetics is the induction of transgenerational stress resistance upon chemical exposure, as demonstrated in rice exposed to metals. Evaluating epigenetics in ecotoxicological field studies is a second relatively new approach. A cryptic lineage of earthworms had developed arsenic tolerance in the field, concurrent with specific DNA methylation patterns. Flatfish caught in the framework of environmental monitoring had developed tumours, exhibiting specific DNA methylation patterns. Two main potential implications of epigenetics in an ecotoxicological context are (1) the possibility of transgenerationally inherited, chemical stress-induced epigenetic changes with associated phenotypes and (2) epigenetically induced adaptation to stress upon long-term chemical exposure. Key knowledge gaps are concerned with the causality of the relation between epigenetic and phenotypic changes, the persistence of transgenerational effects, the implications at population level and the costs of tolerance. Epigenetic changes following exposure to multiple stressors constitute another promising area of further research.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors