[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [284074]
Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes
De Wit, P.; Dupont, S.; Thorne, P. (2015). Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9(9): 1112-1123. https://dx.doi.org/10.1111/eva.12335
In: Evolutionary Applications. Blackwell: Oxford. ISSN 1752-4571; e-ISSN 1752-4571, more
Peer reviewed article  

Available in  Authors 

Keywords
    Biological phenomena > Adaptations > Acclimation
    Biological phenomena > Evolution
    Gene expression
    Transcription
    Pseudocalanus Boeck, 1873 [WoRMS]
Author keywords
    adaptation; ocean acidi?cation; Pseudocalanus; transgenerational effects; translation

Authors  Top 
  • De Wit, P.
  • Dupont, S., more
  • Thorne, P.

Abstract
    Ocean acidification is expected to have dramatic impacts on oceanic ecosystems, yet surprisingly few studies currently examine long-term adaptive and plastic responses of marine invertebrates to pCO2 stress. Here, we exposed populations of the common copepod Pseudocalanus acuspes to three pCO2 regimes (400, 900, and 1550 µatm) for two generations, after which we conducted a reciprocal transplant experiment. A de novo transcriptome was assembled, annotated, and gene expression data revealed that genes involved in RNA transcription were strongly down-regulated in populations with long-term exposure to a high pCO2 environment, even after transplantation back to control levels. In addition, 747 000 SNPs were identified, out of which 1513 showed consistent changes in nucleotide frequency between replicates of control and high pCO2 populations. Functions involving RNA transcription and ribosomal function, as well as ion transport and oxidative phosphorylation, were highly overrepresented. We thus conclude that pCO2 stress appears to impose selection in copepods on RNA synthesis and translation, possibly modulated by helicase expression. Using a physiological hypothesis-testing strategy to mine gene expression data, we herein increase the power to detect cellular targets of ocean acidification. This novel approach seems promising for future studies of effects of environmental changes in ecologically important nonmodel organisms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors