[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [259861]
Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms
Herlory, O.; Richard, P.; Blanchard, G.F. (2007). Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms. Mar. Biol. (Berl.) 153(1): 91-101. http://dx.doi.org/10.1007/s00227-007-0787-9
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Herlory, O.
  • Richard, P.
  • Blanchard, G.F., more

Abstract
    The light response curve methodology for microphytobenthic biofilms was studied by comparing the two most usual approaches used in pulse amplitude modulated (PAM) fluorometry. The non-sequential light curve (N-SLC) method is characterized by independent measures of the photosynthetic activity across a light gradient whereas the rapid light curve (RLC) method consists of successive measures on the same sample exposed to a stepwise increase of light intensities. Experiments were carried out on experimental microphytobenthic biofilms prepared from natural assemblages and acclimated to dark conditions. In preliminary experiments, N-SLCs were constructed from fluorescence induction curves performed at 12 different photon flux densities (PFDs). A minimum of 50 s of illumination was necessary to reach a stable light response curve; shorter illumination times resulted in underestimating the physiological parameters (a the light utilization coefficient in light-limited conditions and rETRmax the maximum rate of photosynthesis efficiency) of the light response curve. For the comparison between N-SLCs and RLCs, the same time of illumination (50 s) was used for each light step of RLCs so that N-SLCs differed from RLCs only by the way the amount of light was delivered, i.e., a light dose accumulation for RLC. The experimental results showed the difference between the two photobiological response curves. In the lower range of PFDs, RLCs exhibited a larger value of a; in this light-limited part of the response curve the incremental increase of PFDs limited the development of NPQ and resulted in a better optimization of electron transport rate for RLC. In the higher range of PFDs, the trend was reversed and the RLC showed a lower value of rETRmax than the N-SLC did; this is attributed to the light dose accumulation which likely led to a more efficient dispersion of energy, as illustrated by a higher non-photochemical quenching (NPQ). In conclusion, these results confirm that parameters derived from both methods differ in their value and do not bear the same physiological information.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors