[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [254290]
Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section
Lambelet, M.; van de Flierdt, T.; Crocket, K.; Rehkämper, M.; Kreissig, K.; Coles, B.; Rijkenberg, M.J.A.; Gerringa, L.J.A.; de Baar, H.J.W.; Steinfeldt, R. (2016). Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta 177: 1-29. dx.doi.org/10.1016/j.gca.2015.12.019
In: Geochimica et Cosmochimica Acta. Elsevier: Oxford,New York etc.. ISSN 0016-7037; e-ISSN 1872-9533, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Lambelet, M.
  • van de Flierdt, T.
  • Crocket, K.
  • Rehkämper, M.
  • Kreissig, K.
  • Coles, B.
  • Rijkenberg, M.J.A., more
  • Gerringa, L.J.A., more
  • de Baar, H.J.W., more
  • Steinfeldt, R.

Abstract
    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), eNd = -14.2 ± 0.3; Labrador Sea Water (LSW), eNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), eNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), eNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by eNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of eNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (eNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors