[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [246500]
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
van Helmond, N.A.G.M.; Sluijs, A.; Sinninghe Damsté, J.S.; Reichart, G.-J.; Voigt, S.; Erbacher, J.; Pross, J.; Brinkhuis, H. (2015). Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Clim. Past 11: 495-508. dx.doi.org/10.5194/cp-11-495-2015
In: Climate of the Past. Copernicus: Göttingen. ISSN 1814-9324; e-ISSN 1814-9332, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • van Helmond, N.A.G.M.
  • Sluijs, A.
  • Sinninghe Damsté, J.S., more
  • Reichart, G.-J., more
  • Voigt, S.
  • Erbacher, J.
  • Pross, J.
  • Brinkhuis, H., more

Abstract
    Global warming, changes in the hydrological cycle and enhanced marine primary productivity all have been invoked as having contributed to the occurrence of widespread ocean anoxia during the Cenomanian–Turonian oceanic anoxic event (OAE2; ~94 Ma), but disentangling these factors on a regional scale has remained problematic. In an attempt to separate these forcing factors, we generated palynological and organic geochemical records using a core spanning the OAE2 from Wunstorf, Lower Saxony Basin (LSB; northern Germany), which exhibits cyclic black shale–marl alternations related to the orbital precession cycle. Despite the widely varying depositional conditions complicating the interpretation of the obtained records, TEX86H indicates that sea-surface temperature (SST) evolution in the LSB during OAE2 resembles that of previously studied sites throughout the proto-North Atlantic. Cooling during the so-called Plenus Cold Event interrupted black shale deposition during the early stages of OAE2. However, TEX86 does not vary significantly across black shale–marl alternations, suggesting that temperature variations did not force the formation of the cyclic black shale horizons. Relative (i.e., with respect to marine palynomorphs) and absolute abundances of pollen and spores are elevated during phases of black shale deposition, indicative of enhanced precipitation and run-off. High abundances of cysts from inferred heterotrophic and euryhaline dinoflagellates supports high run-off, which likely introduced additional nutrients to the epicontinental shelf resulting in elevated marine primary productivity.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors