[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [241023]
Extraordinary host switching in siphonostomatoid copepods and the demise of the Monstrilloida: Integrating molecular data, ontogeny and antennulary morphology
Huys, R.; LLewellyn-Hughes, J.; Conroy-Dalton, S.; Olson, P.D.; Spinks, J.N.; Johnston, D.A. (2007). Extraordinary host switching in siphonostomatoid copepods and the demise of the Monstrilloida: Integrating molecular data, ontogeny and antennulary morphology. Mol. Phylogenet. Evol. 43(2): 368-378. http://dx.doi.org/10.1016/j.ympev.2007.02.004
In: Molecular Phylogenetics and Evolution. Elsevier: Orlando, FL. ISSN 1055-7903; e-ISSN 1095-9513, more
Peer reviewed article  

Available in  Authors 

Keywords
    Monstrilloida [WoRMS]
    Marine/Coastal
Author keywords
    Monstrilloida; Caligiform families; SSU rDNA; Morphology; Host switching; Phylogenetic inference

Authors  Top 
  • Huys, R., more
  • LLewellyn-Hughes, J.
  • Conroy-Dalton, S.
  • Olson, P.D.
  • Spinks, J.N.
  • Johnston, D.A.

Abstract
    Copepods exhibit an astounding variety of lifestyles, host associations and morphology, to the extent that their crustacean affinities may be obscured. Relationships among the ten copepod orders based on morphological characters remain equivocal. Here we test the ordinal status of the enigmatic Monstrilloida using SSU rDNA gene sequences, comparative morphological data (antennulary sensory interface) and ontogenetic data (caudal ramus setation patterns). Bayesian analysis unexpectedly revealed the Monstrilloida are nested within a fish-parasitic clade of the Siphonostomatoida and share a common ancestor with the stem species of the caligiform families (sea-lice). This unforeseen relationship is congruent with both antennulary and caudal ramus morphology. The divergence of the monstrilloids from an ectoparasitic, vertebrate-associated ancestor involved radical changes in host utilization, body plan and life cycle strategy, a combination rarely observed and probably unique in metazoan parasites. Adult monstrilloids secondarily returned to a free-living, predator-exposed mode of life and we postulate the pressure on maintaining a functional approaching-predator detection system has progenetically delayed the suppression (as in post-copepodid caligiform instars) of the 5-point antennulary sensory array. The homoplastic evolution of the frontal filament in Siphonostomatoida is discussed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors