[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [238332]
Marine ice deformation experiments: an empirical validation of creep parameters
Dierckx, M.; Tison, J.-L. (2013). Marine ice deformation experiments: an empirical validation of creep parameters. Geophys. Res. Lett. 40(1): 134-138. dx.doi.org/10.1029/2012GL054197
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 

Abstract
    Marine ice is increasingly recognized as an important component of ice shelves in Antarctica. Because it mainly accretes in "weak" locations, it plays a crucial role in ice shelf stability. Little is known however on the rheology of this particular material (low salinity, no bubbles, specific fabrics). We present marine ice deformation experiments in unconfined uniaxial compression at -10 degrees C, -6 degrees C, and -3 degrees C. Generally, marine ice samples confirm the value of n=3 for Glen's power law. It also appears to behave systematically "harder" than artificial or meteoric isotropic ice samples used in the past, in the studied stress condition. Bulk salinity does not seem to have a significant impact on the viscosity. All deformation curves compare well with a generalized empirical temperature/viscosity relationship. They represent the first experimental validation of the lower boundary of this rheological relationship recommended for use in modeling ice dynamics. Citation: Dierckx, M., and J.-L. Tison (2013), Marine ice deformation experiments: an empirical validation of creep parameters, Geophys. Res. Lett., 40, 134-138, doi: 10.1029/2012GL054197.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors