[ report an error in this record ]basket (0): add | show Print this page

Finite-element model of the great barrier reef circulation
Lambrechts, J.; Deleersnijder, E.; Legat, V.; Wolanski, E. (2008). Finite-element model of the great barrier reef circulation, in: Mees, J. et al. (Ed.) VLIZ Young Scientists' Day, Brugge, Belgium, 29 February 2008: book of abstracts. VLIZ Special Publication, 40: pp. 52
In: Mees, J.; Seys, J. (Ed.) (2008). VLIZ Young Scientists' Day, Brugge, Belgium, 29 February 2008: book of abstracts. VLIZ Special Publication, 40. Vlaams Instituut voor de Zee (VLIZ): Oostende. ix, 96 pp., more
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950, more

Available in  Authors 
Document type: Summary

Keyword
    Marine/Coastal

Authors  Top 
  • Lambrechts, J., more
  • Deleersnijder, E., more
  • Legat, V., more
  • Wolanski, E., more

Abstract
    An unstructured-mesh, finite element, depth-integrated model of the hydrodynamics of the whole Great Barrier Barrier Reef (GBR), Australia, has been developed and implemented on a parallel computer. Far away from reefs, islands and important bathymetric features, the mesh size may be as large as a few kilometres, whereas, in the vicinity of reefs and islands, the grid is drastically refined, leading to meshes that can be 100 metres in size. This enables our model to simulate motions characterized by a wide range of space and time scales. Large scale currents, i.e. the tides, the wind-induced circulation and the bifurcation of the East Australian Current, are reproduced with an accuracy that is comparable to that achieved by today’s large-scale models of the GBR. The model is also successful at representing small-scale processes, such as tidal jets, their instabilities, as well as the eddies developing in the wake of islands and headlands. Both large and small scales have been validated.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors