[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [261646]
Effect of internal gravitational coupling on Titan's non-synchronous rotation
Karatekin, O.; Van Hoolst, T.; Tokano, T (2008). Effect of internal gravitational coupling on Titan's non-synchronous rotation. Geophys. Res. Lett. 35(16). dx.doi.org/10.1029/2008GL034744
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Karatekin, O., more
  • Van Hoolst, T., more
  • Tokano, T

Abstract
    Variations in the spin period of Titan have been detected by the Cassini radar observations. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. The measured rotation rate can be explained if Titan's icy crust is rotationally decoupled from the interior in the presence of a subsurface ocean. However, we show that Titan is likely to rotate almost as a rigid body even when it has an internal ocean because of a substantial internal gravitational coupling between the crust and the interior. The predicted surface rotation rate will be further reduced due to Saturn's torque, but can approach to the observed value if other factors, such as larger atmospheric torque, smaller equatorial flattening or viscous relaxation of the icy crust are considered.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors