IMIS | Lifewatch regional portal

You are here


[ report an error in this record ]basket (0): add | show Print this page

Carbon, iron and sulphur cycling in the sediments of a Mediterranean lagoon (Ghar El Melh, Tunisia)
Oueslati, W.; van de Velde, S.; Helali, M.A.; Added, A.; Aleya, L.; Meysman, F.J.R. (2019). Carbon, iron and sulphur cycling in the sediments of a Mediterranean lagoon (Ghar El Melh, Tunisia). Est., Coast. and Shelf Sci. 221: 156-169.
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Marine sediments; Early diagenesis; Pyrite formation; Authigenic carbonate formation

Authors  Top 
  • Oueslati, W.
  • van de Velde, S., more
  • Helali, M.A.
  • Added, A.
  • Aleya, L.
  • Meysman, F.J.R., more

    Coastal lagoon sediments are important for the biogeochemical carbon cycle at the land-ocean transition, as they form hotspots for organic carbon burial, as well as potential sites for authigenic carbonate formation. Here, we employ an early diagenetic model to quantify the coupled redox cycling of carbon, iron and sulphur in the sediments of the shallow Ghar El Melh (GEM) lagoon (Tunisia). The model simulated depth profiles show a good correspondence with available pore water data (dissolved inorganic carbon, NH4+, total alkalinity, Ca2+, Fe2+ and SO42−) and solid phase data (organic matter, pyrite, calcium carbonate and iron (oxyhydr)oxides). This indicates that the model is able to capture the dominant processes influencing the sedimentary biogeochemical cycling. Our results show that sediment of the GEM lagoon is an efficient reactor for organic matter breakdown (burial efficiency < 10%), with an important role for aerobic respiration (32%) and sulphatereduction (61%). Despite high rates of sulphate reduction, free sulphide does not accumulate in the pore water, due to a large terrestrial input of reactive iron oxides and the efficient sequestration of free sulphide into iron sulphide phases. High pyrite burial (2.2 mmol FeS2 m−2 d−1) prevents the reoxidation of reduced sulphide, thus resulting in a low total oxygen uptake (4.7 mmol m−2 d−1) of the sediment and a relatively high oxygen penetration depth. The formation of pyrite also generates high amounts of alkalinity in the pore water, which stimulates authigenic carbonate precipitation (2.7 mmol m−2 d−1) and leads to alkalinity release to the overlying water (3.4 mmol m−2 d−1). Model simulations with and without an N-cycle reveal a limited influence of nitrification and denitrification on overall organic matter diagenesis. Overall, our study highlights the potential role of coastal lagoons for the global carbon and sulphur cycle, and their possible contribution to shelf alkalinity, which increases the buffering capacity of the coastal ocean for CO2 uptake.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors